7.5. DIGERA Forssk.

The genus Digera is represted in Egypt by one species (Boulos, 1999).

7.5.1. *Digera muricata* (L.) Mart., Nov. Act. Nat. Cur. 13: 285 (1826); Boulos, Fl. Egypt 1: 136 (1999).

Syns. Achyranthes muricata L., Sp. Pl., ed. 2, 295 (1762); Digera arvensis Forssk., Fl. Aegypt.-Arab. 65 (1775).

Constituents

The phytochemical screening of *Digera muricata* revealed the presence of phenols, flavonoids, alkaloids, terpenes, sterols, tannins, glycosides and lignin The quantitative estimation of the different constituents are: proteins (8.305 ± 1.13) , carbohydrates (20.90 ± 3.33) , chlorophylls (8.040 ± 2.17) , amino acids (2.382 ± 0.19) , reducing sugars $(0.4.040 \pm 1.37)$, lipids (2.800 ± 0.48) , prolines (1.090 ± 0.57) , phenols (0.414 ± 0.19) , flavonoids (0.214 ± 0.13) , alkaloids (0.013 ± 0.15) , terpenoids (1.270 ± 1.03) , saponins (0.857 ± 0.89) and tannins (1.412 ± 0.73) mg/100 g (Mathad and Mety, 2010). According to Sharma *et al.* (2011b), the plant contains higher soluble sugars in roots, starch, protein and lipids in leaves and phenol in roots as compared to other parts of the plant (Table 63).

		(mg/g dry wergint)		
Plant parts	Soluble sugar	Starch	Lipid	Protein
Root	32.3±0.43	27.1±0.69	9.2 ± 1.41	44.0±0.69
Stem	16.5 ± 1.71	18.8 ± 1.14	2.6±1.14	19.5 ± 1.01
Leaf	28.7±1.41	33.5±1.41	18.3±0.71	78.0±1.01

Table 63. Proximate composition of the different parts of *Digera muricata** (mg/g dry weight)

* (Sharma *et al.*, 2011b)

Digera arvensis is quite rich in protein, Fe, P, carotenoids and ascorbic acid, but moderate in Ca and oxalic acid contents (Ragu and Kapoor, 1997). The potential profile of *Digera arvensis* and its potential for meeting the nutritional seeds of the Indian populations have been reviewed (Seshadri and Nambiar, 2003).

Calcium content of *Digera arvensis* amounts to 506 mg/100 g (Gupta *et al.*, 2005). The bioavailability of Fe and/or Ca in Digera species has been reported (Reddy and Kulkarni, 1986; Gupta *et al.*, 2006; Vijaya *et al.*, 2008). Analysis of nutrient (carbohydrates, proteins, minerals, total carotenoids, β -carotene, lutein and ascorbic acid) and antinutrient (oxalate content and tannins) constituents of *Digera arvenis* and/or *Digera muricata*, have been reported by several authors (e.g. Rao *et al.*, 1980; Nambiar and Seshadri, 1998; Bharathi and Umamaheshwari, 2001; Rajyalakshmi *et al.*, 2001; Punia *et al.*, 2004; Gupta *et al.*, 2005; Bélanger *et al.*, 2010).

The leaves of *Digera muricatus*, growing in India, contained 3.00% lipids, which were separated into neutral lipid (0.8%) and phospholipids (2.04%). The following fatty acids were identyified in the lipids: capric, 4.94; lauric, 3.71; myristic, 1.60; palmitic, 78.6; stearic, 2.01; and oleic, 2.72% (Khan and Khan, 1989).

The major components of the essential oils of leaves and roots of *Digera arvensis* were found to be α -phellandrene (52.04%); longifolene (15.12%) and α -cedrene (14.67%) from stems; and longifolene (125.12%), α -cedrene (16.67%) and α -phellandrene (58.21%) from roots, respectively (Sarada and Rao, 2006).

Both α - and β -spinasterols were identified in *Digera arvensis* (Dogra *et al.*, 1977). Luteolin and mannitol were isolated from the plant (Mehta *et al.*, 1981).