7.4.7. *Amaranthus palmeri* S. Watson, Proc. Amer. Acad. Arts. 12:274 (1877); Boulos, Fl. Egypt 1: 135 (1999).

Pig weed, Careless weed

Lipids

Phytol and chondrillastrerol have been isolated from the aerial parts of Amaranthus palmeri (Fischer and Quijano, 1985). The nonpolar lipids of Amaranthus palmeri, a common agronomically weed (leaves and flowering parts) were studied by Dailey et al. (1989). The wax ester consisted of a series of C₃₆ to C₅₆ homologues, with the C₄₀, C₄₂, C₄₄, C₄₆ and C₄₈ homologues predominating. Data on the relative distribution of homologues of the free fatty alcohol fractions (I, J) obtained from chromatography and/or recrystallisation of the hexane extracts of leaves and thyrses, the bound fatty alcohols (L) and fatty acids are shown in Table 57. The major wax ester fatty acids were C₁₆, C₁₈, C₂₀, C₂₂ and C₂₄. Similar trends were found between free and bound fatty alcohols, with the C₂₂, C₂₄, C₂₆, C₂₈, C₃₀, and C₃₂ homologues predominating (Dailey et al. 1989). The compositions of the esters containing unsaturated acyl varieties (triglycerides, steryl esters, and terpenol esters) were determined by GC/MS analysis (Dailey et al. 1997). In addition, the free fatty acid, sterol, and triterpenol components were characterized. The triglycerides constituted the major class of esters. The major constituents were palmitic, linoleic, and oleic acids and the sterol chondrillasterol. The sterols campesterol, stigmasterol, ergost-7-en-3β-ol, chondrillast-7-enol, and ethylidenecholest-7-en-3 β -ol and the triterpenols α - and β -amyrin, lupeol, cycloartenol and 24-methylenecycloartenol were present in lesser quantities. The relative distributions of the nonpolar lipids of the leaves of *Amaranthus palmeri* for the original hexane extract A and derived fractions K-M (free alcohols and triterpenols) are given in Table 58 (Dailey *et al.*, 1997).

Other Constituents

The carotene and ascorbic acid values of pigweed or careless weed (*Amaranthus palmeri*) used for food in New Mexico were 6.8-8.6 and 94-134 mg/100 g respectively (Lantz and Smith, 1944). Seed heads of *Amaranthus palmeri* are rich in 2-heptanone, which was consistently found, together with 2-heptanol, in all tissues (Connick *et al.*, 1987). Nine volatile methyl ketones (2-heptanone, 2-octanone, 2-nonanone, 2-undecanone, 2-hexanone, 3-methyl-2-butanone, 2-pentanone, 3-hydroxy-2-butanone and 2- butanone) (Bradow and Connick, 1988a) and eight low molecular aliphatic alcohols and aldehydes (2-heptanol, 3-methyl-1-butanol, 1-hexanol, hexanal, 1-pentanol, acetaldehyde, ethanol and 2-methyl-1-

Isomer	Relative distribution (X100) ^a							
(normal Cx)	Free f	Bound G ^b						
	Mother liquor ^c J	Recryst ^c	Total ^d	Alcohol ^c	Acid ^e			
		I	J + I	L	Κ			
14	f				2.2			
15					1.1			
16					100.0			
17					3.3			
18	7.0		4.2	5.5	43.9			
19	7.3		4.4	0.1	9.0			
20	11.4		6.9	12.4	44.6			
21	7.3		4.4	0.9	2.0			
22	94.6	0.3	57.3	41.9	44.1			
23	13.8	0.1	8.2	4.4	3.5			
24	355.0	22.3	224.0	105.0	28.8			
25	14.0	2.1	17.0	6.1	1.6			
26	15.1	28.3	20.9	52.0	6.1			
27	6.7	3.2	7.4	3.9	0.3			
28	100.0	100.0	100.0	100.0	3.4			
29	6.6	8.9	15.0	7.0	0.1			
30	66.4	87.9	77.0	61.6	1.0			
31	1.0	4.1	2.2	2.9				
32	29.8	41.6	36.9	26.0				
33		0.5	0.2	2.1				
34		1.7	0.7	1.8				

 Table 57. Relative distribution of free fatty alcohols and bound fatty alcohols and acids from wax ester fraction of Amarathus palmeri *

^aRelative to octacosanol or hexadecanoic acid. ^bAfter hydrolysis of wax ester isolate. ^cAnalyzed as TMS derivatives. ^dCalculated from J and I fraction weights and GC data assuming 81% of fraction J was GC-volatile alcohols. ^eAnalyzed as methyl esters. ^fAbsent or less than 0.1.

* Dailey *et al.* (1989)

Compound	Original	Free alcoholas and triterpenols		Free fatty acids and sterols		Hydrolysis product from			
Compound	extract A	K	L L	M	O and s	P	F F	E E	D
Palmitic acid	76		2	55	47	42	-		D
Phytol		100	66				56	90	100
Linoleic acid	100			4	54				
Oleic acid	96			8	44	100			
Stearic acid	12			12	12	8			
1-Eicosanol	< 1	3	3	2			1	4	4
Arachidic acid	4				3				
1-Docosanol	2	18	25	6			2	10	10
Docasanoic acid	5				5	2			
1-Tricosanol	Ũ	3	7		U	-			
1-Tetracosanol	2	70	83	66			9	26	25
Lignoceric acid	1				7	3			
1-Pentacosanol		3	4	7					
<i>n</i> -Nonacosane	9								
1-Hexacosanol	2	24	43	36			4	10	10
1-Heptacosanol		2	4	4					
Hexacosanoic acid	8				2	< 1			8
<i>n</i> -Hentriacontane	11								
Heptacosanoic acid					1				
1-Octacosanol	8	56	100	100			3	23	22
1-Nonacosanol		4	7	10					
Octacosanoic acid	2				8	3	10		
and campesterol									
Stigmasterol	1				3		4		
Stigmasta-22-en-3 β -ol	6				14	1	4		
Ergost-7-en-3 β -ol	4				14	7	99		
β-Amyrin	8	49	63	81				100	23
1-Tricontanol		29	63	2				9	53
Chondrillasterol	52				100	57	100		
α-Amyrin	1	19	25					4	12
Lupeol	2	21	40					9	1
Cycloartenol		6	6					38	1
Chondrillast-7-enol	5				18	7	85		
24-Ethylidenecholest	< 1				3	2	44		
-7-en-3β-ol									
1-Hentriacontanol		3	4						
24-Methylenecycloartenol	2	38	25					10	< 1
1-Dotriacontanol	2	6	11	4				6	24

Table 58. Relative distributions of nonpolar lipids of Amaranthus palmerifor the original hexane extract A and derived fractions.

Dailey *et al.* (1997)

propanol) were identified in the mixture of volatiles released by Amaranthus palmeri. These

volatile compounds significantly inhibited the germination of carrot, tomato, onion and *Amaranthus palmeri* seeds (Bradow and Connick, 1988a,b). Tow betacyanins, amaranthine (major) and isoamaranthine (traces) were identified in the plant (Cai *et al.*, 2001).

Palmer amaranth (*Amaranthus palmeri*) is a common agronomically significant weed whose soil have been observed to inhibit the growth of certain crop plants, most notably carrots and onion (Dailey *et al.*, 1989). The weed residues are also autotoxic (Menges, 1987). Vanillin, 3-methoxy-4-hydoxynitrobenzene and 2,6-dimethoxybenzoquinone were isolated from the roots of *Amaranthus palmeri* (Fischer and Quijano, 1985).

The oxalate levels in some *Amaranthus* species (including *Amaranthus palmeri*) varied from 26.5 - 59.12% (Rodriguez *et al.*, 1985).

Biological Activities

Four allergic proteins with molecular weights of 17.9, 20.1, 26.6 and 66.5 kDa have been identified from the pollen (Rosas Alvarado *et al.*, 2008).

The most active allelochemicals from *Amaranthus palmeri* (AM) were volatile compounds. Volatiles emitted by soil containing AM residues and by dried and partially rehydrated leaf and flower residues themselves reduced carrot and tomato seed germination to < 7 %. Freshly harvested AM inhibited only carrot seed. Germination of AM and carrot seeds was retarded by exposure to volatiles from dried AM residues. Onion seeds were also inhibited by volatiles from AM (Bradow and Connick, 1987). The four compounds chondrillasterol, phtol, 2,6-dimethoxybenzoquinone and vanillin, showed biological activities, to varying degrees, in seed germination bioassays (Bradow, 1985). Laboratory seed germination bioassays of crude organic solvent extracts of *Amaranthus palmeri* parts indicated the presence of both promotive and inhibitory compounds. Aqueous extracts of the leaves and thyrses (flowering parts) had no significant effect on any of the seeds tested (Bradow, 1985).